The lcm of 165xy and 77x 3 y is _____. 1,155x 3y 11xy 12,705x 4y 2 105x 3y

2 Answer

  • The least common multiple (LCM) can be determined by factoring out the terms first,
                                 165xy = (3)(11)(5)(x)(y)
                                  77x³y = (7)(11)(x)(x)(x)(y)
    Copy the factors writing off the repeated factors only once,
                            LCM = (3)(11)(5)(x)(y)(7)(x)(x)= 1155x³y
    The answer is 1155x³y (first choice) 
  • Answer:


    Step-by-step explanation:

    Find LCM of [tex]165xy \ and \ 77x^3y[/tex]

    We write the expression in factors

    [tex]165xy= 3 \cdot 11 \cdot 5 \cdot x \cdot y[/tex]

    [tex]77x^3y= 11 \cdot 7 \cdot x \cdot x \cdot x \cdot y[/tex]

    To find LCM, w multiply  all the common factors first 11xy

    Now we multiply all the remaining terms

    [tex]LCM = 11xy \cdot 3 \cdot 5 \cdot x \cdot x \cdot 7= 1155x^3y[/tex]