Jamie purchased a condo for $89,900 with a down payment of 20%; her credit terms were 5% for 15 years. what is jamie's monthly payment?
Mathematics
katiehouborg
Question
Jamie purchased a condo for $89,900 with a down payment of 20%; her credit terms were 5% for 15 years. what is jamie's monthly payment?
2 Answer

1. User Answers jdoe0001
[tex]\bf \qquad \qquad \textit{Amortized Loan Value} \\\\ pymt=P\left[ \cfrac{\frac{r}{n}}{1\left( 1+ \frac{r}{n}\right)^{nt}} \right] \\\\[/tex]
[tex]\bf \begin{cases} P= \begin{array}{llll} \textit{original amount}\\ \end{array}\to & \begin{array}{llll} \quad89900\\ \ \ 20\%\\ 17980\\ \\ \quad 71920 \end{array}\\ pymt=\textit{periodic payments}\\ r=rate\to 5\%\to \frac{5}{100}\to &0.05\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{payments are monthly, thus} \end{array}\to &12\\ t=years\to &15 \end{cases} \\\\\\ pymt=71920\left[ \cfrac{\frac{0.05}{12}}{1\left( 1+ \frac{0.05}{12}\right)^{12\cdot 15}} \right][/tex] 
2. User Answers slicergiza
Answer:
$ 568.74 ( approx )
Stepbystep explanation:
Since, the monthly payment formula is,
[tex]P=\frac{PV(r)}{1(1+r)^{n}}[/tex]
Where,
PV = present value of the loan or borrowed amount,
r = monthly rate,
n = number of months,
Given,
The value of condo = $ 89,900,
Down payment rate = 20%,
Thus, the borrowed amount, PV = 89900  20% of 89900
[tex]=89900\frac{20\times 89900}{100}[/tex]
[tex]=8990017980[/tex]
[tex]=\$71920[/tex]
APR = 5% = 0.05 ⇒ r = [tex]\frac{0.05}{12}[/tex] ( 1 year = 12 months ),
Time = 15 years ⇒ n = 15 × 12 = 180
Hence, the monthly payment would be,
[tex]P=\frac{71920(\frac{0.05}{12})}{1(1+\frac{0.05}{12})^{180}}[/tex]
[tex]=568.738776353[/tex]
[tex]\approx \$ 568.74[/tex]